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ANALYTICAL RESEARCH ON

SYNCHRONOUS GYROSCOPIC VIBRATION ABSORBER

SUMMARY

/269

The feasibility of a synchronous dynamic vibration absorber
based on gyroscopic resonance is demonstrated analytically and
experimentally, The linearized equations of motion are solved
for response of the body to which the absorber is attached as a
function of excitation frequency, gyro speed, excitation force,
and gyro configuration characteristics, A method of solving the
nonlinearized equations is presented, Because of the excitation
synchronization possible, the superiority of the gyroscopic
absorber over the conventional Frahm absorber is demonstrated,
For a parallel arrangement of two gyroscopic absorbers, one dampe2d
and one undamped, both an undamped antiresonant frequency and a
damped resonant frequency are obtained,

The effects of elastic restraint, damping, and flexibility
in the support structure were examined analytically. Analysis
indicates the feasibility of simultaneous synchronization of an
absorber to two excitation frequencies and isotropic absorption

in the plane of rotation,
/ 7%
e



INTRODUCTION

In vehicles and machines which are subjected to vibratory
forces of constant frequency, conventional dynamic vibration ab-
sorbers (of the type invented by H, Frahm in 1909) have been used
with great success, When the frequency of the exciting force
varies even slightly, the conventional dynamic absorber must be
heavier than the weight necessary to meet force-level and tuning
requirements, because the frequency bandwidth of significant
attenuation, which is a function of the mass of the absorber,
must be then wide enough to cover the range of excitation frequency.
If the excitation frequency varies more than a few per cent, a
conventional dynamic absorber of tolerable weight is likely to do
more harm than benefit,

All rotating machinery produce vibratory forces on the sup-
porting structure, The frequency of these excitations are
harmonics of the rotational frequency, In some instances, such
as the case of a very accurately, but not perfectly, balanced
gyroscope, the excitation forces are small, In cases like the
helicopter and screw-driven ocean vessel, the excitations are
usually quite large, In almost all cases of rotating machinery,
the excitation frequency varies at least a few per cent, In many
cases, such as ocean vessels and certain compound aircraft, the
excitation frequency will vary to such a degree that conventional
dynamic absorbers are impractical,

Figure 1 shows the dynamic response of a structure with one
natural frequency, The structure undergoes a resonance when the
excitation frequency coincides with the natural frequency., In
Figure 2, the effect of attaching a conventional dynamic absorber
to the structure is shown. The absorber creates an antiresonance
for one particular frequency, but it adds another degree of free-
dom to the system, and therefore adds another natural frequency,
Unless the excitation is restricted to a very narrow range about
the antiresonance, the addition of the absorber results in two
potentially serious amplifications instead of one (Reference 1).

Figure 3 illustrates a different concept in structural vibra-
tion absorption: the structural Frequency Response Curve is made
to be a function of the RPM of the excitation machinery and varies
in such a manner that the antiresonance frequency coincides with
the excitation frequency. This results in very nearly 100 per
cent absorption at virtually all RPM, The frequency at which the
Gyroscopic Vibration Absorber is the most effective is a function
of the speed of the gyro wheel, As a result, the gyro speed may
be synchronized directly to the excitation frequency,
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FIGURE 1.- GENERAL RESPONSE OF A STRUCTURE
WITHOUT A VIBRATION ABSORBER
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FIGURE 2,- GENERAL RESPONSE OF A STRUCTURE
WITH A CONVENTIONAL VIBRATION ABSORBER
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FIGURE 3. - GENERAL RESPONSE OF A
STRUCTURE WITH SYNCHRONOUS VIBRATION ABSORBER




In this report, the analytic principles of the synchronous
gyroscopic vibration absorber are established, The analysis is
directed toward accurate description of the pertinent equations
of motion, Linearization of these equations with the assumption
of small angular motion is accomplished, As well, the restriction
to small angles is removed for an alternate solution of the re-
sulting nonlinear equations, There is considered the effects of
damping and spring restraint, The primary characteristic sought
was the response of a body to which the absorber is attached as a
function of the excitation frequency, gyro speed, the ratio of
force/mass, damping, elastic restraint and absorber mass/effective
mass ratio,

Derivation of the equations of motion was accomplished by
Lagrangian methods, The linearized solution of the Gyroscopic
Vibration Absorber (GVA) equations, without synchronization, was
compared to the characteristic response of the Frahm absorber,
In addition, a linearized solution of equations of motion for a
combination of two gyroscopic absorbers mounted in parallel was
obtained and compared with a similar Frahm combination, In both
combinations, only one, i,e, Frahm or GVA, was damped,

A method of solving the large angle equations of motion was
contributed by Dr, Howard W, Butler, Chairman of the Department
of Mechanical Engineering at West Virginia University and formerly
of the Hartford Graduate Center of Rensselaer Polytechnic Insti-
tute. Mr. Roland Anderson and Mr. Michael Smith participated in
the derivation of the equations of motion and the. solution of
the linearized equations.




DISCUSSION OF DYNAMIC ABSORBERS

The Frahm Absorber

The spring-mass dynamic vibration absorber, invented by
H. Frahm in 1909, is successfully used, in a wide variety of
applications, to modify the dynamic response of structures in
such a manner that an essentially infinite impedance (zero re-
sponse) is created at the attachment point of the absorber for a
particular, predetermined frequency, When the excitation fre-
quency on any machine or structure is not constant, or very nearly
so, the Frahm absorber is ineffective and may, because of the
resonant condition it adds to the system, do more harm than good
(Reference 1), The frequency bandwidth, across which the Frahm
absorber is significantly effective, is a function of the ratio
of the absorber mass to the "effective mass'" of the structure to
which it is attached, Because excitation frequencies almost
always vary at least a few per cent, most vibration absorbers in
use in aircraft today must be several times heavier than the mini-
mum weight, dictated by force-level and tuning requirements, to
adequately cover the excitation bandwidth (Reference 2).

The function of an undamped dynamic absorber is to react the
effective excitation force, at the attachment point of the ab-
sorber, and not (contrary to what its name seems to imply) to
"absorb'" a certain amount of “vibratory energy'" from the struc-
ture, The maximum force which a Frahm absorber can react is
determined by the allowable stress in its spring, the spring
stiffness and the maximum deflection, However, the antiresonant
frequency is given by the ratio of the absorber spring stiffness
to absorber mass., It is readily appreciated that the designer of
a Frahm absorber often has a difficult task striking a reasonable
balance between the stress, stiffness and minimum weight require-
ments for given force level and antiresonant frequency,

The ineffectiveness of the Frahm absorber at any but a single,
nearly constant excitation frequency; the necessity for additional
absorber weight to give a practical, although still narrow band-
width; and the inherent design limitations necessitated by the
potential energy portion of the absorber, motivated a search for
a purely kinetic dynamic absorber having a remotely controllable
and linearly synchronizable antiresonant frequency, This search
resulted in the Gyroscopic Vibration Absorber,




Linear Synchronous Absorbers

While synchronous absorbers have been used in
torsional systems (Reference 1) for many years, the out-
of -plane centrifugal pendulum (References 8, 9, and 10)
is the only synchronous absorber for general use in linear
vibrations other than the GVA. The only reference in the
literature known to the authors, which discusses actual
experiments with this absorber (Reference 10) indicates that
the device was not successful. It might be logically
presumed that friction from centrifugal loading of the
pendulum pivots contributed to the lack of success in the
experiment, although this is conjecture. One of the ob-
jectives in the design of the GVA was to avoid a large
steady radial load (such as centrifugal force) on the
oscillatory pivots.

The out-of-plane centrifugal pendulum absorber is
quite space-consuming for aircraft applications, compared
to the GVA, and would produce undesirable moments (assuming
it can be made to work) in installations which would require
cantilevering the device from structure. In the opinion of
the authors, the centrifugal pendulum absorber can be made
to work and would be most useful in certain applications.

The in-plane centrifugal absorber (References 9 and
10) has been successfully applied in helicopter experiments,
but, as the in-plane type can cause potentially destructive
mechanical instability unless very prudently applied, its
use is restricted, for practical reasons, to highly specialized
applications such as in-plane excitations on helicopter rotor
heads. This absorber has not been applied to any helicopters
in actual use.

The out-of-plane centrifugal pendulum absorber was
discarded by the senior author, in his original search for
a suitable aircraft structural synchronous absorber, largely
because of space requirements, mounting difficulties and
the stress and friction problems resulting from steady
centrifugal loading., The in-plane centrifugal pendulum
absorber was discarded in consideration of the danger of
destructive mechanical instability (which is a function of
the aircraft structural impendance), in addition to the
reasons mentioned above for the out-of-plane case.




The Gyroscopic Vibration Absorber

The Gyroscopic Vibration Absorber, shown schematically in
Figure 4, is a completely inertial, conservative means of reacting
a sinusoidal force., A natural frequency in the decoupled GVA is
achieved through an oscillating flow of energy between the pre-
cessional and nutational kinetic states of the gyroscopic disc
which is analogous to the more common case of the elastic-inertial
system in which the energy flows between the potential energy
and kinetic energy states, The antiresonant frequency of the GVA
is, for small precessional and nutational angles, linearly propor-
tional to the angular velocity of the gyroscopic disc, If the
disc velocity is properly synchronized to the frequency of a
sinusoidal excitation, the GVA will produce an antiresonance on
the structure at all values of the excitation frequency, thereby
producing the effect of theoretically infinite bandwidth as re-
gards the excitation to which the GVA is synchronized (see Figure
3).

Helicopters, compound aircraft, rotary wing spacecraft decel-
erators, and certain VTOL aircraft are usually excited primarily
by the nth harmonic of the rotational speed of the N-bladed rotor
or propeller, Almost all vehicles, from rockets to railroad cars
are subjected to some excitation which is a harmonic of the speed
of rotating machinery, such as wheels, pumps, actuators, etc,
Synchronization of the GVA to such discrete harmonics is uncompli-
cated, involving only an open-loop means of driving the gyroscopic
disc at a speed which is a multiple of the speed of the disturbing
machinery,

It is conceivable that the GVA antiresonant frequency could
be synchronized to the frequency of the worst disturbance in a
distributed excitation spectrum using circuitry which would pass
only input signals above a certain predetermined magnitude and
select a synchronization frequency within the bandwidth of the
greatest disturbance. Before such a scheme would be of practical
value, it is necessary to attenuate the resonant response of the
GVA without deterioration of the antiresonant effectiveness; a
means for accomplishing this was found in the course of this re-
search, and it is reported in the section titled "Parallel GVA
Mounting", However, in light of the serious, more immediately
practical problem of discrete harmonic disturbance, the matter of
absorption of purely distributed, or so-called random, excitation
is of secondary concern in this project,




FIGURE 4.- GENERAL CONFIGURATION OF THE
GYROSCOPIC VIBRATION ABSORBER




The "Parallel GVA Mounting' scheme appears to be a practical
solution to the quite realistic problem of an excitation environ-
ment consisting of a very high discrete harmonic disturbance
along with a lower magnitude, but not insignificant, distributed
disturbance spectrum,

Aside from the obvious use of the GVA as a synchronous dynamic
absorber, the ability which it gives to remotely control and
change the dynamic properties of a structure through control of
the angular velocity of a gyroscope could have significant uses
in research and testing. The desirability of remote control of
the dynamic properties of structures undergoing flutter or buffet-

ing, for example, was mentioned in 1955 by Thompson and Yeates of
NACA (Reference 3).

The basic features of the Gyroscopic Vibration Absorber,
along with the additional properties of planar isotropy and si-
multaneous synchronization to two excitations, may be found in
an alternate configuration which is analytically described in the
section titled '"Coriolis Absorber Configuration",
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EQUATIONS OF MOTION

Description of the System

The Gyroscopic Vibration Absorher is shown schematically in
Figure 4, mounted to vibrating structure. The absorber consists
of three primary parts:

(1) The Gyroscopic Disc which spins at constant angular
velocity, Q, relative to its shaft, The Gyroscopic
Disc would, most likely, contain the field coil of
the driving motor,

(2) The Tare consists of the shaft, the motor armature,
and the inner gimbal frame or yoke, The Tare os-
cillates through angle © and angle 0.

(3) The Barrel, or outer gimbal frame, oscillates through
angle 6 about a pivot axis on the structure, The pivot
(0) axis is perpendicular to the ¢ axis and does not
intersect the center of gravity of the absorber,

The Gyroscopic Vibration Absorber does not require elastic
restraint or dissipative devices to perform its primary function,
However, springs and dampers are shown about the © and ¢ axes
in Figure 4, and are included in some of the analyses to account
for elastic and dissipative effects which cannot be entirely
eliminated in any practical device, and to examine the effect of
deliberately incorporated pivot springs and dampers on absorber
performance,

The structure to which the Gyroscopic Absorber is mounted is
represented as an effective mass only in Figure 4, Because only
narrow antiresonant frequency bandwidths are of interest (due
to the very nature of the synchronous absorber) in the following
analyses, the slope of the structural impedance across the band-
width will generally be nearly constant., As an arbitrary basis
for comparative analysis of various configurations of gyroscopic
absorbers and Frahm (spring-mass) absorbers, the magnitude and
slope of basic structural impedance is set equal to the magnitude
and slope of an arbitrary mass, Me, This appears to be a less
restrictive basis of comparison of dynamic absorbers than the
more common assumption that the basic structure is in resonance
with the excitation frequency.

11
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FIGURE 5.- DIAGRAM OF THE GVA




Derivation Of Equations

In Figure 5, consider a point mass (dm) on the gyro rotor and
transfer the coordinates to a fixed space (inertial system),
Consider axes X4 s Yyq4 s and Z4 fixed to the gyro rotor with Z4
as the axis of spin, The axes x,, v, , and 2z, are rotated
through angles ¢ , ¢ , and @ in that order to become axes X3

Y » and Z; which are parallel to the fixed axes X, , y, ,
and 2Lz o

Using position tensors:

X3 X4
| =@l [&1¥] |v, ()
Z, Za
where:
[ ! 0] o)
f@] = 0] cos 6 -siN 6 (2)
o, SIN 8 cos 6
[ cos é o} ~SIN é
[®] = o I o
SIN ¢ o cos ¢ (3)
L
-cos‘/f -sin¥ )
Wl= [swy cosw o (4)
o fo) /

The mathematical work will be simplified if, instead of using
Lagrange's Equation directly, use is made of d'Alembert's Princi-
ple in the form employed in the derivation of Lagrange's Equation,
This avoids the unnecessary algebraic labor of writing the actual
Kinetic Energy Expression, and this process may be regarded as

13




rigorous employment of the Virtual Work Principle., Representing
X,

3
£
23
of a particle mass become:

f[%ﬂr[ﬂ dm = My (5)

Me

the vector by |C| , d'Alembert's Equations for integration

(6)

v
0‘0
———
—
(SR
—
Q.
3
il

It is seen from the derivation of Lagrange's Equation that
the parallel axes transformation and the effects of the tare and
barrel can be brought into the analysis by superposition upon
the Euler-type rotation,

Choosing X4, Y , and Zyat the center of gravity of the disc,
giving the disc polar symmetry, and letting Yy, be a principal
axis of the tare and barrel, the equations may be integrated to
give the following equations of motion of the Classical Gyro-
scope configuration of the GVA,

Products of inertia were eliminated by representing such
coefficients in terms of sums and differences of principal mo-
ments of inertia. The presence of periodic coefficients as
expected is notable,

0= é [IM +(IN —de)SINsz +A2fnd +qur "‘qub] +Izd;§2¢.6'05¢ (7)

+ 2¢9(Igd"1xd> S/N¢CD$¢ + §(,4,de05 & +/ém7. coS 9) +Kee+ C‘eé

0= &(Iy-1y,,) ~L,u06cosé + 6*(Iua-Isy)sing cosg + Ky +Cs é (8)

Fosinecot = 3(my+my + mp+Me) + 8(amg +.Lm, + rms) cos @
.2
-6 (amy +£my +rm,) sine

(9)

14




SOLUTIONS TO EQUATIONS

Small Angular Motion

Discussion, - It may be seen by inspection that Equations (7),
(8), and (9) may be closely approximated by linear equations for
small values of © and ¢. This requires, then, that the precessional
and nutational angles be limited to a maximum of on the order of
15 or 20 degrees. The resulting linearized equations in the
following sections will describe the response of the structure to
which the absorber is attached, as well as the corresponding pre-
cessional and nutational amplitudes of the GVA,

Linearized Equations., - Giving the gyroscopic disc polar
symmetry about the axis of rotation ( Ixq = [, ), Equations (7),
(8), and (9) become, for small values of © and

© Equation:

L6 + 1,004 +S5 +C6 +Ke0 =0 (10)
¢ Equation:
Lid - LQ8 +Cop + Kpp =0 (11)
6 Equation:
M & + Sé =F (12)
where:
Io = Ixa *a’mg + Luar + Ixus

I¢ = [vqg + Iyir
S = amy +Lm +rm,

MT-= MC "'md'l“m.r +n’)b

15




Assuming a steady state solution of the form q = Qeu”t
the small angle equations are, in matrix form,

q

|

- w*S 2], +Kg +2coCo {AYFRY | ':5‘ lO
0 - Cwle Q —wiy +Ky +iwlpi |8] = 0. (13)

- wiM, —cw* S 0 Jicp‘! F

Using Cramer's Rule on the characteristic determinant, the
displacement impedance of the basic structure is seen to be:

Z,=

F wh(s]e - le.lo)“w(M I‘(‘,r« IeCO 5% o) v UM Tono + M Io e +M, CGCO - M'—I:ﬂ"SV‘Ko)iE‘_}.).{_ﬂL‘S’C0 *MvKCCO)'W'{Mv K;_K!}
3 ‘J,],)—«w (ToCo +JoCa)-w’ (Iykeg v oo+ 1) A s Coly )+ 1w Kalo *KeCo)+ Ko Ko (14)

With Cg = CH = Ko = K¢ = O, the denominator in Equation
(14) goes to zero, causing the structural displacement 6 to be
Zero when

T80
W = w/j] (15)

the antiresonant frequency. It is especially important to note
that wg is linearly proportional to {i, If there is a discrete,
but variable excitation frequency w« to which  can be so syn-

chronized that

N/I_JL_GJ
= . (16)

The structure will exhibit zero response regardless of the value
of w.,, 1If, in a 3-bladed compound helicopter, for example, the
ratio of the number of poles in a tachometer generator to the
number of poles in the GVA synchronous motor is equal to

3J [o[¢

F3
absorb all the predominant 3P excitation (at the absorber attach-
ment point) in spite of large changes in rotor speed,

> a GVA mounted on the compound helicopter would

When the numerator in Equation (14) goes to zero, the resonant
condition with the GVA is given by

R = NTRGTE a7

16




The characteristic determinant can be used as well to calcu-
late the amplitude of the precessional and nutational motion with
the intent that these are to be limited to 20 degrees. For no
damping or spring restraint, these angles are given by

= __Sléfo
© = I#[Se_MrIa]wz-&- I;QZMT (18)
- *Z.Izs&ﬁn .
¢ - I¢[Sa—MTIQ]w3+If.Q?MTw (19)
Dividing one equation by the other yields:
Q. -cLQ (20)

6 I¢CU

and it is seen that ¢ >eo .

By substituting Equation (15) into Equation (19), there is
obtained

_F JI
=575 Tf (21)

Bandwidth Comparison of GVA and Frahm Absorbers, - The struc-

tural displacement impedance at the attachment point (6 axis in
Figure 5) of an unsynchronized GVA, without damping or spring
restraint, and acting on a structure of acceleration - impedance,
Me, follows from Equation (14):

wq( _IS_Z —Me—m) + co"'a)i(Me+m)
+0
e - WF

F
Zd= '5"‘ = (22)

Rewriting Equation (22) in terms of the ratio of structural dis-
placement without an absorber ( 6,) and the displacement with a
GVA (6) gives:

|+ %ﬂ(/w‘#)

D e ()

2
e -
oat (23)

17




Equation (23) requires some interpretation., “$,/w,; is the fre-
quency (in per cent of «waq ) at which the structure, with an
unsynchronized GVA, will have a displacement which is §/5, times the
displacement it would have without an absorber, Obviously, “<{,,
is double-valued, as is readily deduced from Figure 6; it appears
to be single-valued in Equation (23), only because the phasing

of § to § (0° to 180° in the undamped case) is implicit. re-
writing Equation (23) in terms of the absolute values of §/&
yields two equations:

Wy — I+ \%OK/+,(A)
a? [ + l%l[' +m (i - ZL:)] (24)
and
wa . 1 - [5G ]
MR YR ) (2%

where «/;,represents the upper frequency for a given value of ’5/3J 3
andw,, represents the lower frequency at which the same value of
$/So will be found, See Figure 6,

A similar calculation may be made for a Frahm absorber, shown
in Figure 7. The upper frequency at which the structural response
will be §/5, times the response without an absorber is given by:

Wi _ 1 + B0+ p) (26)
“at | + LQ
Do
and the lower limit by:
wir _ 1 =180 +#) (27)
Ut | - %4

18




FIGURE 7.- FRAHM ABSORBER
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FIGURE 6.~ BANDWIDTH COMPARISON OF
GVA AND FRAHM ABSORBERS
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Comparison of Equation (24) to Equation (26) and Equation
(25) to Equation (27) shows that the bandwidth of the unsynchronized
GVA is narrower than that of the Frahm, It should also be noted
that the GVA cannot be reduced to the Frahm: Equation (24) can
be made equal to Equation (26), for example, only when «,/p, = 1.0,
a value which is quickly approached as the arm length .., is in-
creased,

While the bandwidth of the GVA is narrower than that of the
Frahm, it is not necessarily very much narrower., In any case,
the synchronization feature of the GVA makes bandwidth a secondary
consideration, i.e, it need be only wide enough to cover synchroni-
zation error,

Damping. - While the effect of damping on the © axis of the
GVA might be expected to have effects similar to damping in the
Frahm absorber, the exact effect of precessional () damping in
the GVA was not intuitively obvious, The following analysis shows
that ¢ damping is the same in kind, although not in magnitude, as
© damping and damping about either the © or ¢ axes produces
effects similar to damping in the Frahm absorber,

From Equation (14), the following expression may be obtained
for a structure (represented by mass Me) equipped with a GVA
having damping on the © axis only, and having no pivotal elastic
restraint:

é 2 [%d§~]]2+45; 2
0

- 28)
2 4.2 2 We p2 2 (
{qu(/—f"—/“‘-g-‘z)—(f+/u)} +4'u7qze(/+'u)
Similarly, the response equation for an unrestrained GVA
with damping on the ¢ axis defined as the precessional axis is:

(29)

2 z W2 g2

SF [%‘xl—’] + 4'U_Jaz ¢7
- 2 z
[ (12 ) (1) ]* + 4 2001 e 1 2

&

The expressions are seen to be identical except for the second
term in the denominator, It can be seen as well that the minimum
response will shift away from the "antiresonant'" frequency as
damping increases, but is still proportional to gyro speed.
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Figures 8 through 10 further demonstrate the similarity of
response for the Frahm, © damped GVA, and ¢ damped GVA. A mass
ratio of 10 was chosen to make the bandwidth distinctive, As
mass ratio increases, the bandwidth narrows, The distance between
gyro disc center and attachment point was chosen to be four times
the disc radius as typical, It can be seen that bandwidths are
quite similar, and the effect of damping on all three devices is
similar, It is also apparent that although the damping reduces
the response at resonance, more importantly it increases the am-
plitude of minimum response., Therefore, it is concluded that the
GVA should be nearly undamped in precession and nutation for best
performance,

Elastic Restraint. - For an undamped GVA with elastic restraint
about the nutational, O, axis, the antiresonant frequency is simply
derived from the General Equation as:

2 2
I, : 2
Wi =wé+ “EL = Ws + Wa (30)
Ie Io
where a): ::_Eé
Lo

and similarly, for precessional restraint:

wa = W;+ wa (31)
where cu; - Ko
I

Thus, for either nutational or precessional restraint, the anti-
resonant frequency may be expressed as a function of gyro speed.

With elastic restraint about both 6 and ¢ axes (undamped), the
expression for the antiresonant frequency becomes:

2 2 2 %2
.t = ((AJ92+ we? +u)¢)+{<‘w62 T We™ ¢+ u)a) - we L«Jy}} (32)
Z 2 - 2
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In plotting fA as a function of gyro speed () for various values
I

of wg , wpg , and '/Igzb’ as in Figure 11, a family of curves are

obtained which are asymptotic to the slope,

fa _ Iz_
N ‘/}:’1¢ (33)

and if wg= Wy , the family of curves will also be symmetrical
about w4 = We= wp , Thus, there exists two antiresonant frequen-
cies at a given gyro speed, The practicality of eliminating vi-
bration at both frequencies may prove difficult in that the
divergent slope characteristics of the antiresonant curves suggest
"tuning" problems for minor excitation variances,

Structural Flexibility., -~ Excessive flexibility in those parts
of the GVA structure designed to be rigid will cause the synchroni-
zation curve (see Ffigure 12) to be nonlinear, This phenomenon is
essentially a variation in nutational resonance similar to the
case discussed in Reference 4, This effect has been demonstrated
experimentally in the GVA and should not be difficult to avoid
by insuring, in the design of the GVA, that the first bending
natural frequency of the '"rigid" GVA structure is very high com-
pared to the highest frequency of excitation,

Representing structural flexibility in the GVA by the spring
hinge in the barrel in Figure 13, the equation for 6 = 0O becomes:

~

-

Ku'wz(-[e’*""bz) “"’Izﬂw ~Kx-wimab| |0
—I.Izﬂw "‘I¢U)2 O (P =O
“(—t)?_dbm - KD(. O _wzazm +K¢’< « (34)
Equation (34) is a quadratic in w?after dividing out the root
«w'=0, If K = oo , the roots are:
wq—O (o{)ﬂ (35)
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FIGURE 13.- REPRESENTATION OF STRUCTURAL FLEXIBILITY
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which is the case with rigid structure. When Q@ = oo , the
roots are:

z Ka
w =0 , Wav = — 4 (36)
Ma
where «j,is the antiresonant frequency asymptote, When Q = O,
the roots are:
Ie 2
wJ :O ) WZQL = -/ wau (37)

Ie’

Noting, in Equation (37), that Ig > fsr, it is evident that the

first bending natural frequency will be greater than the asymptotic
antiresonant frequency, However, the bending natural frequency
should be close to the asymptotic antiresonance ( Ig ~ Jg') for

most GVA designs, allowing use of the natural frequency as an
approximation of wg,. If way is very high, the synchronization

is essentially 1linear in the lower frequency range,

Stability. - The dynamic stability of the GVA was investigated
for the linearized equations of motion, The pertinent equation
is that formed by the matrix on Page 15 and is a quartic of the
form:

S*+A,8 +A,5° +A S +A, =0 (38)

For stability, the Routh criteria set forth, for instance, in
Reference 1, requires that all coefficients ( AO'A,¢42,A,) be
positive, and

Al + A4, A, (39)
A:Az A3
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4= |25 *29(’12&72[9)]/("»5:19)

The above coefficients are always positive, since physical
parameters of the GVA dictate that $*/m, ], is always less than
one; therefore, the first criterion for stability is satisfied.

Since stability of the GVA, as a function of gyro speed, is

of major interest, Equation (39) was re-arranged to determine its
stability as a function of gyro speed or:

2 2 2 ¢, .
PN A N
[ZQ ws +24, w;][zﬁ; +4s (1~ /Tqiz, )] (40)

Substituting in the above expression ‘f O gives the following
results:

Wy

v

o)
(41)

also, substituting in w, —()(effectlve structural restraints) in
Equation (40) gives:

2 2 51 )
L2 S a%f}; +4Z§; ;;'+‘1;;;;(9";ﬁj%
9 (! P?le
Substituting in 5; =0 and w! = (O gives similar results,

It is seen from these results with zero damping or elastic
restraints, that the GVA is stable over the complete RPM range of
the gyro,
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Large Angular Motion

Discussion. - Nonlinear equations of the GVA type, three
simultaneous unlinearized equations of motion having periodic
coefficients, generally cannot be solved exactly, This type is
usually linearized, or approximate solutions are obtained by
‘perturbation technique, analog, etc, However, the GVA equations
have been solved exactly for steady state periodic motion of the
system. The solution is in the form of transcendental equations
describing the response relation of angular amplitudes and
forcing function amplitude and frequency,

As supplementary approaches to the solution of the GVA equa-
tions, a numerical solution, Runge-Kutta, was used to bear out a
significant stability criterion,
fo
Sw?

derived in the analytic solution,

+ﬂ’—‘y’£l

SIN 8, = S

Analysis -~ Amplitude of ©, - Recalling that the GVA equations
of motion can be written without the small angle restriction, and
damping or spring terms:

. . v 43
Ie6 + 2P (cos @)+ Sos©)8 =0 (43)
IMﬁ—Laé(eos Q) =0 (44)
" Y _
M, é +Sdt(6cose) F (45)
Multiplying (43) by é, (44) by 6, and substituting (45), there
is obtained:
066 +Io00 - o 9 (Gcos @) = -5 F6cos © (46)
° ¢ 2My dt My

The left side of (46) is an exact derivative, and the solution is:
T c2 otz s2 . 2 . 2
I (6'-6., )+ (¢-0,) - R (6 cos8) -(B. cos6,)
T

C 1 N
__.?Sj FO cos ©dT
T
fo

M (47)
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If the system is periodic to the extent that © and § return to
initial values after time, t,

To+t T

(o‘ft Z.o*?'
OSJ F O Cos e)dl = j Fd(siv8)— [s/v Glcos wlot =0
¢ lo To

[+

F=Fo sinv
and nwil=1?

(48)
Integrating (45) directly yields:
. — _ Fk r
Mr§ + S5 siv &8 = K w0 cos w (49)
and again,
MTJ+55/~6=—% SV WT + K, t + K (50)

For periodic motion on §, , K,=0, and the exact solution may be
written:

R

Mr (8-8o) + S(simv 8-3n 8o) === siv i (51)

or without loss of generality:
Mrd + S sine = —L‘:, sIN wt (52)
Mr3+551}v§=—5 cos wt (53)
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For periodic motion of the main mass, the displacement may be
represented by a Fourier series as:

§ = }:(an cos hwt + b, SIV nwt) (54)
substituting into (52) yields:

5[;; ,:;’T (an cos nwt +bn sIN nwt) (55)

SIN & =

Rewriting (43) (using 53) yields:

[666 + Ig0p—Mr &4 = (E(cos wt) § (56)

and by (54)
1,66 +100 - M, §f =

(57)
—Fo w cos WwWC Xh’(a,. cos nwl +bn SIN hWT)

Integration of (57) yields:
Io (6°-65) + Ip(¢*- ) - ™My (8*-4.7) =

T= 2
-2 F au/ cos wl an(Qn cos nwt +b, s/NV nw()o(t (58)
t-0

For periodic motion, the left side vanishes at multiples of the
period, hence:

J Zahn (cos wt)(cos nwt)dT

=7
/ thn’(cog WZ/{SIN NC«J()dC (59)
t

=0
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The second integral vanishes naturally for all values of n,

a] must
vanish as a necessary condition of periodicity. All remaining

while the first vanishes for all n except n = 1, Hence,

coefficients also vanish except for bl, and the complete solution

for (45) is:

=68, sin wt

and

sSIN © = SIN O, SIN Wt

where

My 4.
SIN 6, = —(5%,1 + 57 )

with the necessary condition:

=+
S w? S

Fo My &,
T ’ _-é_ l

Analysis - Amplitude of @, - Rewriting Equation (43):

lo g, :
ad_tGS/N¢)=j—f(le+f;—Q(C058)5

and integrating using (60) and (61) yields:

lo w (sin B.)(cos wT) s

=~ — ._"‘_)_J/
SING Izﬂ[(cos wit)cos 8)

[, (cos 6) 2

, cos'e, ¢ [ 8,)(cos wl)+ cos 6)
SIN 6, cos 6,

(60)

(61)

(62)

(63)

(64)

(65)
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where:

2
sin @, == de (i 6/)_Swa’,[l , o050, , |+ SIN 6,} 66

I.n 2L N SIN 8, cos B,

Integration of Equation (44) yields:

cos?9, = Sé(cos‘s)
} cos e Ie /N &)

2 S S.cos? B)
cos*6, =+

cos @ =(Z)w—
(-8

The complete solution for the undamped, unrestrained GVA
equations of motion is given by Equations (60), (61), (65), (66),
and (67), with the stability criterion given by Equation (63).

Elastic Restraint and Damping., - When the effects of springs
and damping are added to both the @ and § axes of the GVA, then
the solutions to the GVA exact equations of motion are:

68
sin 6 = (SN 8.)( s w(‘) (68)
M-r 5[ F-o
SIN O, = ( 7 ,uw,] < .0 (69)
§ = & SIN wt 70y
Io w(sin 6 )(cos wi) Sw & P ieos
= ' =
sin @ = F A o5 o +* L na (cos w)( )
ClinB)(cos wT) Co© Swd, (cos?e)
2 w I, 41 T 21 (si~ve)
_ b ]»Zn ((.S/N 8)cos w0 + cos 9)
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Lo (g2 -07) + (ot <o) + 52 (0 - 00)-

2 -
- 5“’2 d (s +(bsc) siv 6 =0

where ¢ and b are defined by:

bh TAN & +C SIN B

and is an approximation for the spring coustant on the 8 axis,

and where:

yig
2 [ -
¢ +°<9=J (Cop O* + CoB)dt
o

I, w?sin‘e,

| Lwi(sine) , Sw? é, oS 6% + bsiNG ¢ SIN B,
é I.Qlcos 8.) Lo 2cos 6, 2
- [ (e
[-0
+ Ce(AJa
d') _ [.O)
° jl- SIN? Qs
-1 CeB,
¢§ = SIN &

P = SINT'(SIN @,) (al [=0)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Considerable simplification results when Co = C¢ =0, i,e,,

2

Iy (b ) K@ Iowisin28) Swié 6/n6)
2 - _ +(brc)sin 8,)=0 (79)
2 2 2 2
where:
: Io wiGING) Sw?d,(os6) b(SIN B,)
= . oW OIS _ : c(sin6)
(Dg I, 0 cos g, [, N 2 (cos 6) M 2 (80)
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EXPERIMENTAL INVESTIGATION

Discussion

Tests of experimental working models of the Gyroscopic Vibra-
tion Absorber (GVA) have demonstrated feasibility and corroborated
analysis of the discrete frequency absorber as reported in Ref-
erence 5, Analytical investigation of the effect of flexibility
in the GVA structure was confirmed experimentally,

The test program described herein was designed to provide
experimental proof of the two fundamental GVA principles, pre-
dicted by theory, which are necessary and sufficient to the
establishment of feasibility of the GVA:

(a) A purely inertial gyroscopic system will produce
an antiresonance of the mass to which it is
attached (i.e. that such a system has a natural
frequency when decoupled),

(b) The antiresonant frequency is proportional to
the angular speed of the gyro,

To achieve these objectives, two experimental working models
of the GVA were constructed and tested on an MB 50-pound shaker,

Experimental Model 1

A preliminary GVA test model (Figure 14) was constructed
using a scrap ball bearing driven by air jets, directed against
the balls, and supplied by hanger pneumatic lines through a regu-
lator, The bearing was free to precess about a diametral axis
of the disc and to nutate about an axis roughly parallel to the
gyro disc plane and displaced 9 1/2 inches from the disc center,
as shown in Figure 15,

The model was attached to an MB C-11 shaker, A velocity
transducer was clamped to the shaker armature and its output fed
to an MB vibration meter,

The speed of the bearing was found to be very sensitive to
the friction load, resulting from axial loading of the balls by
the gyroscopic moment, While this turbine arrangement was capable
of producing enormous bearing angular velocities, it provided very
little torque at high speed. As a consequence of the low torque
and apparently negative torque-speed curve, it was impossible to
achieve a steady state antiresonant condition,
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FIGURE 15.- DIAGRAM OF A GVA TFST MODEL
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The transient antiresonant condition, with the gyro speed
dropping, showed very pronounced attenuation, and the effect was
repeatable, With the shaker operating, the gyro disc was manu-
ally positioned in a plane normal to the nutational axis which
unloaded the rotor and allowed the gyro to accelerate, When the
gyro (bearing) reached high speed, the gyro was turned manually
about the ¢ axis (Figure 15) until it was in the plane of the ©
axis and then released, The gyroscopic moments building up on
the bearing caused the speed to decrease, and it would pass
through the antiresonant gyro speed. At that speed, the armature
pick-up output dropped by an order of magnitude, and the model
executed the modes predicted in Reference 6,

This test provided qualitative confirmation of GVA theory,
as discussed in Reference 6,

Experimental Model 11

Description, - An experimental model of the Gyroscopic Vibra-
tion Absorber (Figure 16) was constructed by suitably mounting a
standard Minneapolis-Honeywell JG-7005 rate gyro so that the
assembly has the type of GVA mechanical action described in Ref-
erence 6,

The rate gyro was left entirely intact and mounted in the
as-supplied condition (complete with rubber mounting pads bonded
to gyro base) to the vertical face of an aluminum angle, Two
rod end bearings with female threads were attached to the hori-
zontal face of the angle by screws, While this arrangement has
circuitous load paths and allows much greater flexure than normal
design arrangements, it seemed sufficiently representative of a
GVA design for demonstration and experimentation purposes, An
alternative design that is contemplated for the future is shown
in Figure 17,

The rate gyro is equipped with removable spring restraint
about the ¢ axis (Figure 16), The spring rate about axis ¢ was
found to be 3,59 inch-pounds/radian by force-deflection measure-
ments, The static natural frequency of the gyro about the pre-
cessional (@) axis was measured as 8.0 c.p.S., by plucking the
gyro and recording the rudder-control circuit breaker blips (with
a D,C, signal) on an oscillograph, With known static natural
frequency and rotational spring rate, the inertia in precession
(¢) was calculated at ,549 pound-inches squared,

The manufacturer lists the momentum (], () ) of the rate gyro
as 3,0 x 106 gm—cmz/second (1.023 x 103 pound—inchz/second) at

24,000 RPM which gives I, = ,4075 pound—inchesz°
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FIGURE 16, -

SCHEMATIC OF THE GVA

41



42

CECCO—

FIGURE 17,- AN ALTERNATE GVA CONFIGURATION




To obtain the nutational inertia ( ][5 ), the pendular period
of the GVA model was clocked and found to be 0,625 seconds, The
location of the center of gravity was found by accurately weighing
the model and by using a scale as one reaction in a simple-beam
support of the model, Treating the GVA as a compound pendulum
oscillating about the © axis, the nutational inertia was obtained:

tz/.LW 2

Ig= = 37,7 pound-inches

Summary of the Physical Parameters of the
GVA Experimental Model II:

We = 8.0 c.p.s. I, = . 4075 lbs—in2
K¢ = 3.59 in-1bs/rad I = 37,7 lbs-in2
Iy = . 549 lbs—in2 4 = 3.58 inches

W = 2,75 pounds

Instrumentation, - The GVA model was mounted to an MB Type
C-11 Electromagnetic Shaker as shown in Figure 18. An MB velocity
pickup was clamped to a flange on the shaker armature and the
pickup output fed to an MB vibration meter,

An electronic counter was hooked in parallel with the rate
gyro synchronous motor terminals so that the counter read line
frequency (400 c.p.s.) with the power on and gyro speed (gen-
erated emf pulse count) with motor power off, The deceleration
rate is so low, 260 seconds to go from 420 RPS to 60 RPS (see
Figure 19), that sufficient speed resolution could be obtained
at the antiresonance during gyro '"run-down" using the electronic
counter; this scheme eliminated the need for inverters and asso-
ciated equipment,

Gyro speed, as measured by the electronic counter, was cross-
checked against stroboscope measurement of speed, The strobo-
scope was calibrated against reed vibration at line frequency,
The stroboscope range did not extend to 400 RPS, so it was used
to measure the second, third, fourth, and fifth subharmonics of
gyro speed,
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Second GVA Test Model

Figure 18,
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Increased resolution of the shaker armature ammeter was ob-
tained by connecting a Ballantine peak-to-peak VTVM to the
oscilloscope terminals of the MB control console, It was found
that there is a 10:1 relationship between the voltage across the
CRO terminals and the armature current throughout the range of
excitation frequency used in the tests,

Discussion - Model I1, - With the gyroscope motor not turning
and with a constant .22 amps on the shaker armature, the armature
vibratory velocity was measured at steady-state excitation fre-
quencies ranging from 10 c,p.s, to 100 c.p.s., yielding the upper
curve shown in Figure 20, Under the same conditions, except that
the gyro was turning at 380 revolutions/second, the antiresonant
curve was obtained, Note that 98,3 per cent of the vibration
was eliminated at the antiresonance, The very broad bandwidth
in this case is a result of the high absorber mass to armature
mass ratio, and is not relevant to the GVA concept as such, The
bandwidth of an undamped linear GVA, operating through small
angles, should be slightly smaller than the bandwidth of a Frahm
absorber of the same absorber mass to main mass ratio.

The peak velocity in resonance was not measured in gathering
the data shown in Figure 20, To avoid damage to the delicate in-
strument bearings in the rate gyro, the resonant frequency was
passed through quickly,

It was found that operation at .50 amperes on the shaker
caused such excessive deflection in the gyro gimbal structure
that the upper gyro bearing on the precessional (@) axis would
Jump its socket and jam after about three minutes running time,
Rather than mutilating the rate gyro by structural stiffening of
the casting to correct this problem, the shaker armature amperage
was reduced to ,22 amps, This necessitated use of a VTVM on the
console oscilloscope output to increase effective ammeter resolu-
tion, No further bearing difficulties were encountered with the
reduced amperage.

To determine the variation in antiresonant frequency with
gyro speed, the excitation frequency was set lower than the anti-
resonant frequency with top gyro speed (420 revolutions/second),
The gyro motor was then turned off and the gyro allowed to de-
celerate while its speed was monitored on the Electronic Counter,
As the gyro reached a speed which made the excitation frequency
an antiresonant frequency, the vibration meter would register a
null, The Electronic Counter reading of gyro speed at the null
was recorded., Figure 21 shows a plot of antiresonant frequency
versus gyro speed from test, and a plot of the values predicted
from Equation (31). The test points begin to differ significantly
from theory at about 15 c.p.Ss.
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The ¢ springs were removed from the gyro and the points
(shown as ®) in Figure 22 were obtained., At «w > 14 c,p.s.,
these test points differ significantly from the prediction of
Equation (15). It was suspected that the discrepancy between
theory and test was a consequence of excessive structural flexi-
bility, inherent in the model, from the rubber mounts on the gyro
base, thin gimbal structure, etc., An analysis was performed on
the system, shown in Figure 13, to determine theoretically
effect of structural flexibility. As shown by Equation (36),
flexibility of the type described in Figure 13 would cause the

antiresonant frequency to asymptotically approach ,/;ﬁal as

the gyro speed (1 approaches infinity, At Q = 0, there are two
antiresonant frequencies (Equation 37): w=0 and w= / Ze Waw *

Although Figure 13 describes an arrangement which can hg}dly be
regarded as a precise representation of the actual model flexi-
bilities, and although J,- is not precisely known for the complex
model structure, it was felt that the resulting Equation (36)
should be sufficient to approximately predict model performance,

It was reasonable to assume that -%i =:-%é and that
6; Oo
28 c.p.s. < Way < 50 c.p.s. for the upper (O) experimental
points in Figure 22, Equation (37) then predicted that an anti-
resonant frequency on the shaker armature at zero gyro speed
would be found between 106,5 c.p.s. and 190 c.p.s.,, if structural
flexibility was the cause of the nonlinear antiresonance curve,
After this analytical prediction was derived, the model was
shaken at Q = 0, and a very distinct armature antiresonance was
found at 170 c,p.s. Another antiresonance was found above 400
C.p.s.,, showing that the model has several additional degrees
of freedom beyond the ideal design configuration,

An additional proof that the nonlinear curve resulted from
model deficiencies rather than inherent limitations of the GVA,
the system was '“softened" by placing two rubber grommets in
series between the shaker armature stud and the aluminum channel
adapter, As predicted, the asymptotic antiresonant frequency
was lowered (see Figure 22, A curve), The system was then "softened"
further in the same manner, and, as expected, the asymptotic
antiresonant frequency dropped further (Figure 22, [] curve),
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From these results, it is reasonable to conclude that the
theory of the GVA accurately describes the operation of the GVA
under the assumed conditions of rigid structure and small angles,
It is evident that ordinary design practices would provide suffi-
cient structural rigidity to maintain a linear variation of ¢,
with Q up to very high frequencies,

The angular speed of the gyro is plotted against the time

elapsed from power cutoff in Figure 19, Two exponential curves
-2t -2t

(@ = 420 e ~1.487 x 10 and g - 420 e ~1:02 %10 ), with
slopes which appeared to bracket the test data slope at 420 RPS,
were fitted to the data, Differentiation of these equations at
t = 0 yielded the deceleration at Q = 420 RPS., Because the motor
torque is just sufficient to overcome the torque due to friction,
air resistance, etc, at steady-state speed, the instantaneous
deceleration at t = O times the gyro inertia, I , should equal
the motor torque, With the gyro under vibratory excitation at
antiresonance, the deceleration curve obtained is identical to
the unexcited case, showing that power consumption in the model
motor is independent of the GVA vibratory load,

Calculations show that the instantaneous torque at power cut-
off (t = 0, 420 RPS) is Yetween ,0284 inch-pounds and ,0414
inch-pounds; the power output of the synchronous motor is, there-
fore, between ,01139 horsepower and .0166 horsepower,
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OTHER CONFIGURATIONS

Parallel GVA Mounting

Analysis, - Consideration was given to the mounting of two
identical GVA's with the same rotor spced, one damped and one un-
damped, as in Figure 23, with the expectation of obtaining a
zero response ratio at the antiresonant frequency and a damped
response at the resonant frequency. This was realized. The
analysis leading to this result was similar to that presented on
Page 14 , '"Small Angular Motion', The linearized equations of
motion are as follows, where subscript 1 or 2 indicate which GVA
is considered:

]

6,6, +1, L 9, + 5,8 - o

IeZ é2+ Izz ﬂ d.)z -+ 52 <§' -+ Cez é‘ fy O

I¢,GZ - Izlll_é, =0

Ie,0, " [, 06, +Cq, D, = 0

MT 5/ t 5' el + 52 éz = F (81)
As before, a steady-state solution of the form, q = Qeth, is
assumed, and the matrix form is:

B 0 1 [
~Siw? -l w? o) il Qw o) § o
- S, w2 o) -Ig, W+ i wCe O i I, Nw 8, O

O -il, nw o) - Iy, w* o) 6,/ = O
o o) il N w 0 —I¢Za)&+iuJC¢ d>, 0
'-M'rwa “S,UJZ "\SZ (,4..)2 O O ¢)2 F
L JL 1 L
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FIGURE 23.- PARALLEL GVA MOUNTING
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Expanding this matrix yields the following response equation
as for the single GVA:

~k

. [Si-][(G-1-eas)+ 2 (24 26)] ‘
R CR CAS- B AN (S R A AR R A ERE - R DACA TR N (X5 FRACH A S R EEAE)

(83)

It can be seen (Figure 24) that even with damping on only one
axis of one GVA, a zero response antiresonance and a damped
resonant response are obtained, The damped resonant response will
range from an infinite response for zero damping at a high fre-
quency to an infinite response for infinite damping (on one GVA)
at a lower frequency, These frequencies will be:

we |+ 2 M
for the former, wé |+ 2f4(‘..:%j) (84)
o
A
for the latter, CU; | + TY R (85)
wal— _ﬁ__(_é})
{+I+iu, F4

At some intermediate damping and frequency there will be a
minimum resonant response, This was borne out in the numerical
analysis attendant to Figure 24 where it was found that a damping
ratio, $g , of ,05 yields a resonant response ratio of approxi-
mately 2,75,

For comparison, the response equation of a parallel Frahm
mounting was derived, and it is as follows:

, R

v 2 2 2 2 2
s [%—M% oy -2»4] . 452@:2[%: (1+H)*/—2/AJ

[

(86)

This 1is quite similar to the parallel GVA mounting., Here
again, of course, it lacks the synchronizing capability of the
GVA,
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Stability., - The dynamic stability was investigated for the
parallel GVA using the Routh Criterion. The pertinent equation
is that derived from the matrix on Page 51 , and is a quartic
of the form:

$* +A; 87+ A, 5%+ A S+A, = O (87)

where for stability, the complete criteria, as for the single
GVA, is that all coefficients A are positive, and that:

_AS+AL A
1= a4, A

< 1.0 (88)

For the parallel GVA mounting:

(740 1) 40 (n2+05) (348,24 1)

= y (89)
P (e 112 )(2 #7378, ) (1 + 75 13)
where:
[ + 2 =
Me
(e 5 (90)
/r 2 ﬁ;(/_zfo"?)
S
~_ *27%(/ _2Te/1e/ (91)
)72 o sE
=251~ 57,
= 29
; =
;9 (92)
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It can be determined from Equation (89), that since the co-
efficients A4, through A; are positive for the parallel GVA,
that with zero damping about either axis, © or (, there is
positive stability for rotor speeds greater than zero,
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Coriolis Absorber Configuration

Discussion, - Research on Kaman's Gyroscopic Vibration Absorber
led to a synchronous absorber concept based on rotating inertial
elements arranged in a manner different from the classical gyro-
scope, This rotating-inertia synchronous absorber (called the
Coriolis Absorber because of the important role of Coriolis forces
in its operation) has the advantages over the Gyroscopic Absorber
of linear synchronization to two excitation frequencies and iso-
tropic absorption in the plane of rotation,

The device, shown schematically in Figure 25, called the
"Coriolis Absorber"™, will produce a response as shown in Figure 26
in all directions perpendicular to the axis of rotation, Figure
26 shows antiresonances at two frequencies which may or may not
be harmonics, Figure 27 illustrates the Coriolis Absorber in mo-
tion, Figures 28 through 31 show alternate designs of the Coriolis
Absorber,

Analysis of a mathematical model of the Coriolis Absorber
shows that two sets of "tripoles'" (such as shown in Figure 32),
each set pivoting independently about one of the rotating axes,
are sufficient for polar symmetry.

The fundamental analytical relationship between the gyro-
scopic and the "Coriolis"™ configuration is demonstrated by "position
tensors",

Xg Xy

where for the GVA, B _d¥
7 —[@}[@]PP} Yx ;!2-—4(
2 Ze

and where for the Coriolis Vibration Absorber,
X¢ Xe

d¥

Yel= [@q B@] Ye , L2 T dt
Z,; ZR
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STRUCTURE

FIGURE 25,- SCHEMATIC OF KAMAN'S
CORIOLIS VIBRATION ARSORBER
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STRUCTURAL
RESPONSE
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w

GYRO SPEED
= f (Excitation Frequency)

FIGURE 26, - GENERAL RESPONSE OF A
STRUCTURE WITH A CORIOLIS VIBRATION ABSORBER
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FIGURE 27.- CORIOLIS VIBRATION ABSORBER IN MOTION
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FIGURE 28.- AN ALTERNATE CONFIGURATION OF THE
CORIOLIS VIBRATION ABSORBER




FIGURE 29.- AN ALTERNATE CONFIGURATION OF THE
CORIOLIS VIBRATION ABSORBER
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FIGURE 30.- AN ALTERNATE CONFIGURATION OF THE
CORIOLIS VIBRATION ABSORBER




FIGURE 31.- AN ALTERNATE CONFIGURATION OF THE
CORIOLIS VIBRATION ABSORBER
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FIGURE 32,- TRIPOLE AXES SYSTEM




FIGURE 33.~- GENERAL RIGID BODY AXIS SYSTEM

Analysis, ~ Consider a rigid body constrained to pivot about
the vy, axis with the center of gravity of the body a distance h
from the Y, axis, The coordinates X,, ), , 2, are fixed to the
rigid body with the origin at the center of gravity and are
principal axes, The fixed coordinates of a particle of the rigid

body are given by Equations (93).
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Xe= Xp (cOS ©)(COS W)~ (2p=h)(SIN ©)(COS ¢ =~ Yo(SIN W) +S.

Yi= Yo (COS W)+ Xo(COS B)NSIN ) ~(2.-h)(5IN B)SIN )
(93)
24= 2, (SINB) +(Zp+h)(cos ©)

Using the Principle of Virtual Work, d'Alembert's Equations
for n identical rigid bodies disposed about the axis of rotation,
each at angle §, from the Y, axis, become:

n

2/“* dm) X/(Vfdy’(dm)/*Z/(éfj—f;dm);w

I=1 1= (94)

Z/(Xfc)'\’;dm) + Y/(V;»— dnm); [}(2;32; dm); =

i=]

The second time derivatives of Equation (93) are:

K= =8 Xp (SIN B)(cos w)-6°xp(Co5 6)(COS Y +2016 xo(SING
TL2Xp (COSI ©)(COS @) ~(2,-4)(B)(COS 8)(cos @ +(2p-4) O%s/N A(COS )
+2(2,~4)80(Cos 8)(SIN W) +(Zp=5) QL(SIN §)(COS Y)=Q2Yp(SIN Prds

Y= = Yo 027(Cos @) ~ Xo S (Sin S)Sin ¢) - Xp&%CCos & )(S/N )

-2 X, 26 (51N 8)(COS )~ Xp N3 (CcOS B)(SIN W) ~(2p~h) B(cOs 8J(SIN y)
+ (2p-h) O (SING)(SIN W) =2(2,-b) -1 (Cos 8)(cos )
+ N*(z2,-h](SINB)SIN @)

2r= X6 (OS5 O - Xp B (SIN 6)—(2,*1-.;;9'(5,,\/ 6) -(prfhjéz/Cos o)

(95)
9%
Jo = ~XeG/N &)(CoS @) ~(Z0—h)(cos @)cos )
Y
37;=' Xe (SIN Q)SIN PY)~(2p-h)(coS B)(SIN §)
9% Xp (Cos 8)-( h)(s
Y-S o -(2nt N
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The partial derivatives of Equation (93) with respect to $ x
are all zero except:

X _ :
0 S« = (97)

Writing approximations for Equation (95) and Equation (96) for
small values of angle O, substituting into the first of Equation
(91) and observing, in the integration, that axes p are principal
axes, and the © equation becomes:

i<t

n n n
) [(I.-1,)n%e], + X(zy, B)i + ) himéx cos(p-¢) =0 (98)
f=i

i:l

Similarly, the Sx equation becomes:

n h n
5:[ 6 cos (¢ +¢) —25,)—12 & SINCY +8;) - S/IZ‘ZSCOS((//*‘Q-Hme ~ F,
i=4 [/ [ =1
where 5,==A*n and m is the total mass of the rotating elements,

Multiplying Equation (98) by sin (U +@;) and again by
cos (.Ilt*'¢;) to yield two equations with fixed system coordinates,
and making the substitutions:

n

§'1=£ 6 sINn Y

Is/

g.‘:: i é SIN (.QZ‘+¢,) *nZQCOI(_ﬂ.t+¢/}

fal =
n o n ‘ (100)
f‘:—z 8 sin(nt+ ;) +zn2'e cos(ﬂt+¢;)—.rz‘fe.r//v(ﬂf+d>,-)
£= =y Y
and also the substitutions:
€Z= Z 6 cos (-t +¢; )
=)
. Qa . n
$Z=Z G cos (.QZ‘ +@;) -.QZ G S~ /_(2('+¢;)
Y} IR
(101)

" n o n , |
i:ZG cos (-ﬂt‘,«-¢;}‘2.ﬂz o S/N(Jlr+¢") __azfe 005(_0_?'1-¢d

r'al /=

‘=

-
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and summing for n = 2, ¢& =

T
2? , it is seen that:

Iy, (é'-Z.Q ’9:1 "‘ng.) +(I2-IXI)'Q2€4 =O

Iy, (£, +206,-n*E)+ (I~ L) D76, + S8 =0

(102)
5152 + tSJx = Fox
and the equations of motion of the system,
In matrix form:
f o} "WZLJQI(IZ-Ix,-Iy,) ~2(wll 1y, & |0
-~ Siw? 2/wN T, ~t L, + 01 1-T,) | |6)=]0
- F
—mw? 0 Siwt | £ (103)
Using Cramer's Rule,
v ~wr4 2?1 + (W, - -1, -1,)]"
Fomw([h'me 1) + w4 2° T2+ (T~ 1,,-T,)(2 Ze~h*m|]+ Q(1,-I~1,)*
SYy=0  when (104)

¥ 2w Iy/ = w?* Iy, _ﬂz(Iz’Ix,_Iy,)

and the antiresonant frequencies are given by:

wa= 01 [1 ¢ /A%L J (105)
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Note that there are two antiresonances, each antiresonant
frequency directly proportional to the angular velocity of the
absorber,

Setting the denominator of Equation (104) equal to zero and
solving for «w shows that there are two resonant frequencies,

The summations for two rigid masses, performed on Equations

(100) and (101) in obtaining Equation (102), show that the ab-
sorber has polar symmetry about the axis of rotation,
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RANDOM VIBRATION APPLICATIONS

The GVA is superior to the Frahm absorber in the attenuation
of a random vibration spectrum, since synchronization of the GVA
to the predominant frequency or frequency band is feasible,

Where such a frequency is a function of some "shaft" speed, a
generator could be driven directly by the shaft, thus supplying
to the GVA rotor a driving frequency proportional to the shaft
speed, However, where the predominant frequency is not such a
direct function, then electronic discriminatory circuitry must be
employed. 1Its purpose would be to survey a time history of
acceleration obtained with a band-pass filter (or spectrum analyzer)
fed by a vibration transducer, The survey of power versus fre-
quency will yield a signal input to control the GVA rotor speed
such that the antiresonance will occur at the frequency of maxi-
mum power spectral density,

Since power spectral densities of input, x(Ww), and response
y(«), are related by the following expression (Reference 7):

X(w) = Y(w)[%o]z (106)

it can be seen that there is slight difference between the con-
ventional Frahm and the GVA (linearized response) if both are
tuned to the same frequency., However, slight changes in the pre-
dominant frequency negates the effectiveness of the Frahm, whereas
the GVA can be resynchronized,
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CONCLUSIONS

1, Rigorous derivation of the equations of motion of the GVA
confirms that the antiresonance can be linearly synchronized to
the excitation frequency, thereby giving the effect of infinite
bandwidth to a discrete but variable excitation antiresonant
frequency,

2, The capacity of the GVA to produce an antiresonance, the
frequency of which is a function of gyro speed, was demonstrated
experimentally,

3. Preliminary analysis indicates that a particular configura-
tion of synchronous absorbers is capable of simultaneous
synchronization of two antiresonant frequencies and will produce
antiresonance in any direction in the plane of rotation,

4, The mounting of two GVA's in parallel, one damped and the
other undamped, yields (from the linearized equations) an un-
damped antiresonant frequency and a damped resonance which can
be optimized,

S. Torsional spring restraint about either the © or ¢ axis of
the GVA causes a finite antiresonant frequency at zero gyro speed,
However, the antiresonant frequency asymptotically approaches
linearity with gyro speed as the gyro speed becomes very large
compared to the static (nonrotating) natural frequency.

6. Torsional restraint about both the 6 and ¢ axes of the GVA
produces two antiresonances, one of which asymptotically ap-
proaches zero while the other asymptotically approaches linearity
with gyro speed as the gyro speed becomes large compared to the
nonrotating natural frequency.

7. Damping about either axis of the GVA, O or ¢, should be
minimized for minimum structural response at antiresonance.

8. Structural flexibility in the tare (or inner gimbal) of

the GVA causes the antiresonant frequency to asymptotically ap-
proach a finite value which is always less than the nonrotating
"beam" mode frequency of the GVA. This phenomenon is an example
of translatory environmental excitation of gyroscopic nutational
resonance,

9. A method of solving the exact equations of motion, including
the effects of damping and elastic restraint, is presented,
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10, The absorption by the GVA of a spectrum of random vibration
is similar to that of a conventional Frahm when tuned to the same
frequency. However, synchronization to a variable power peak in
that spectrum is feasible for the GVA.
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